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1. Introduction

Perturbative calculations in quantum chromodynamics underlie most of our understanding of
deep-inelastic lepton-hadron and hadron-hadron scattering. Parton-parton scattering amplitudes,
combined with structure functions extracted from deep inelastic lepton-hadron scattering and with
hadronization models (usually driven by Monte Carlo simulations) give predictions of multi-jet
production at hadron-hadron colliders, which are important not only for testing QCD but also as
calculations of backgrounds to new physics beyond the standard model.

One of the ingredients in this understanding is the perturbative calculation of parton-parton
scattering amplitudes. Yet explicit calculations, even at tree-level, are technically complicated.
Several groups have recently put forth approaches which serve to simplify the calculation of such
amplitudes. Lee, Nair, and the author [1} have shown that one can calculate multi-gluon scattering
amplitudes efficiently by considering them as the low-energy or infinite-tension limit of an open
bosonic string theory. Mangano, Parke, and Xu {2] have shown that one can re-write tree-level
Feynman diagrams for multi-gluon processes in a form which resembles that obtained in the string
approach. Berends and Giele [3] have presented a recursive approach to this problem, in which
the amplitude for an n-gluon process can be written in terms of known amplitudes for processes
involving up to n — 1 gluons. In all of these approaches, the full on-shell amplitude for an n-gluon
process in an SU(N) gauge theory can be written as a sum over non-cyclic permutations of the
external legs,

An({kireai}) = g™ D Te(TW - T2 ) An(kor)s€oa)i - katnpr Eo(m)  (L1)
OESn/Zn
where k;, £;, and a; are respectively the momentum, polarization vector, and color index of the
i-th external gluon. The T* are the set of hermitian traceless N X N matrices (normalized so that
Tr(T°T®) = §%), and S,/Z, is the set of non-cyclic permutations of {1,...,n}.

The partial amplitudes A; possess a number of nice properties. Each is gauge invariant, that

is invariant under the substitution e; — €; + Ak; for each leg independently. It is also invariant

under cyclic permutation of its arguments, and satisfies a reflection identity,

A(ny..., 1) = (-1)"4,(1,...,n) (1.2)
as well as a “twist” identity (1],
Z Ap(oyy...y0n-1,n)=0. (1.3)
VEzn—l.



(Mangano, Parke, and Xu (2] term the latter a dual Ward identity.) In addition, these amplitudes
satisfy tree-level unitarity, which is to say they factorize on poles of a consecutive set of their
arguments. |

This representation has been extended to processes involving a single pair of massless quarks
[4,3], and an arbitrary number of massless quarks (5, 6].

In the approach of refs. [1,6], QCD is embedded in an appropriate open string theory, and the
field-theory amplitude emerges as the infinite-tension limit of the string amplitude. The properties
of the field-theory partial amplitudes then emerge directly from known properties of the string-
theory partial amplitudes [7].

Although an excursion through string theory makes clear the structure of the full amplitude as
well as the symmetry properties of the partial amplitudes, it is not necessary for explicit calculations,
as it is possible to formulate a diagrammatic expansion for the partial amplitudes that involves only
field-theory propagators. I discuss this expansion, that of zero-mass mode or ‘zero-mode’ diagrams,
and associated recurrence relations, in section 2. These recurrence relations are very similar in
form to those of Berends and Giele [3]. The recurrence relations can be rephrased in the light-cone
gauge, which, as discussed in section 3, is the natural gauge for using the spinor-helicity basis of of
Xu, Zhang, and Chang [8], a convenient and efficient means of é;lcula.ting explicit expressions for

the partial amplitudes.

2. Zero-Mode Diagrams and Recurrence Relations

In an open string theory, the tree-level amplitudes can be written as a sum over non-cyclic
permutations of partial amplitudes; this is of course the source of the representation (1.1) for
gauge-theory amplitudes. The partial amplitudes can be written as an integral over Koba-Nielsen

variables,

1
An(11 st ’n) = N(al)(n—4)/2 / dzz i ’dzn—z H (2,‘ - zi)u'k‘.k’.
o .

1<j<isn
(2.1)
€i*Ej5
X exp
;(zi— z;) ; (z,—:n,)

maultilinear

where z; = 0, £, = 1, £, — 00, and where the subscript ‘multilinear’ means that one should
take only terms linear in all the polarization vectors when expanding the exponential. For n > 4,
there are explicit powers of the inverse string tension o' in front of the integral, so any surviving
contribution to the field-theory amplitudes comes from regions where the integral produces poles

in a'. We may observe, however, that the a's inside the integral always appear in the combination
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a's;j, where s;; = 2k; - k; is a momentum inva.ria.ht, so poles in o' are equivalent to poles in the
3i50 Thus extracting the low-energy limit is equivalent to factorizing the amplitude on gluon poles.
Unitarity (or explicit computation) tell us that we must sum over all possible factorizations on
invariants built out of consecutive sets of external momenta. The four-point amplitude teaches us
that in some terms, we should not factorize all the way: there are also contact terms coming from a
four-gluon interaction. Thus we can build up the partial amplitudes out of vertices and propagators
for the zero-mass modes of the string, since these are essentially what survive in the infinite-tension
limit. This construction can be phrased in a diagrammatic manner, with rules analogous to those for
conventional Feynman diagrams (the two kinds of diagrams are not interchangeable, however). The
pseudo-Feynman rules for such gluonic zero-mode diagrams are as follows (the rules for including
fermions have been presented elsewhere [6]; note that the normalizations are slightly different here).
To compute a given partial amplitude, draw all planar diagrams using the vertices of fig. 1 and
gluon propagators, with a specific cyclic ordering of the external legs. In the present case, where
all the external legs are gluons, these partial amplitudes are the minimal gauge-invariant pieces to
which one can attach a specified color factor.

All the external legs must satisfy the massless on-shell conditions ¥? = 0 and k - ¢ = 0. In
all the vertices given below, momentum conservation is enforced at every vertex, and all momenta
are taken to be incoming. The appropriate internal vertices are given by removing the external
wavefunction factors (the polarization vectors).

The three-gluon vertex (fig. 1a) represents a factor
\/ii(kz -€162 €3+ k3 -e361 - €3tk - €361 - €3) (2.2)

where (for example) k; is the momentum flowing in through leg 1. This is in fact the same as
the three-gluon vertex in the superstring theory, which is usually presented as an on-shell vertex;
however, it is suitable for use as an off-shell vertex as well, since there are no associated Koba-
Nielsen integrations. (The normalization of the vertex has been adjusted so that the with our
normalization of the SU(N) generators T'%, the coupling constant ¢ in equation (1.1) is the same
as the conventional coupling constant in QCD.)

The four-gluon vertex (fig. 1b) may be extracted from the infinite-tension limit of the four-gluon
partial amplitude in the string theory; it is

iey + £3E7 - &4 (2.3)

Unlike the four-point Feynman vertex, this vertex is not gauge-invariant; the form given is the one

in Feynman gauge.



Each gluon propagator connecting two vertices represents a conventional Feynman-gauge gluon

propagator,

) 1
“zypvk_z‘ (2.4)

where k is the momentum flowing through the line.

The factorization naturally imposes a cyclic ordering on pieces of the amplitude; if, for example,
we chop off a three-gluon vertex from the outside of a diagram, we will be left with a partial
amplitude for a small number of legs, with one leg off-shell. We can use this view-point to build
a recursive scheme for calculating the amplitudes, which is very similar to the recurrence scheme
presented by Berends and Giele [3]; we must enumerate all possible factorizations involving three-
and four-gluon vertices. Because of the presence of two types of vertices, the vertices should appear
separately, in different terms; this in turn implies that the relations will involve factorization on
two simultaneous poles to isolate the three-gluon vertices and factorization on three simultaneous

poles to isolate four-gluon vertices.

Let us define partial amplitudes with polarization vector amputated,

An(ly.neym) = [b-‘:EA,'.] 1,...,n) (2.5)

sums of cyclicly consecutive momenta,

j

Sk (1<)

=i

K; ;= it (2-6)
- Y bk (E>7)
l=j+1
and momentum invariants,
Sii=1
(2.7)

Sig=Kl  (i#3)

The definition of S;; allows us to treat the two-point amplitude on an equal footing with amplitudes
for n > 3. For this purpose we also define

Az,,_‘(l, 2) = ‘iE]_“ (2.8)
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The recurrence relation for gluon amplitudes is then (n > 3)

Ans1 (k1y€15. .5 kny€ni kns1yEnt1) =
1

_ ; mAi'“(kl’ E1yeeey ki-—l! €i-1y _Klyi—l’ 0)

Vi*“?(K1,i-15 Kisni knt1)ent1,

An—i+2,u(kl', Eijerry kru Eny “Kt',n, 0)

n—1n-i+l (2.9)
1 v;pup;\

S1,i-1 Siit+j-3 Sitj-1,n
Aiu(krsen;. . skio, 6615 —Ky,3-1,0)
Aju(kis€iseo s kigj2s€ivj-25 —Kiitj-2,0)
Ap—ioji3,0(Kiti-1)€itj=13++ i Bny€ni ~Kiyj—1,n,0)Ent1a

This relation correctly reproduces the four-gluon and five-gluon amplitudes analytically, and the

correct six-gluon amplitudes [9, 2] numerically.

3. Light-Cone Gauge and the Spinor Helicity Basis

The recurrence relations of section 2 give a prescription for computing the amplitude as a
formal polynomial in the polarization vectors and the momenta. But that is not really what we
want. For explicit computations, we want the amplitude squared, generally summed over final-state
colors and helicities, averaged over initial-state quantum numbers. The XZC spinor-helicity basis
[8], along with the choices of reference momenta along the lines suggested by Mangano, Parke,
and Xu [2] provide an efficient way of computing the various helicity amplitudes, and in turn, the
amplitude squared, summed over helicities. Is there any way we can recast the recurrence relations
to take advantage of the spinor-helicity formalism?

To investigate the possibility, let us consider structure of the gluon propagator. The recur-
rence relations of section 2 used differentiation with respect to the polarization vectors to obtain
amputated amplitudes which were then tied together with propagators. Instead of amputating the
amplitudes, however, we can also form the transverse projection tensor that is part of the vector

propagator by summing over polarizations,
Z Eg) 5;(‘-) = —Guv (3.1)
i

The gauge invariance of the partial amplitudes under gauge transformations, after suitable

redefinitions of the intrinsic four-gluon coupling, allow us to choose a different gauge if we wish.
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It turns out that for gluon amplitudes, light-cone gauge is the choice implemented by use of the
spinor-helicity basis.

To see why this is so, let us compute

P Y, (k)= (~k;q) - py (3.2)
a=(+,-)
Let us do this computation first in the case where all momenta are null vectors; then we will see

how to fix this up in the general case. Using the spinor helicity basis definition of polarization

vectors,
e (ki q) = —(q_r/'_%ﬂ

and the explicit definition of the spinor product (8], we see that e(—k;q) = e(k;q) (which is a

(3.3)

reflection of C invariance), and our expression becomes

7% (220) 1 B (6 pa) [P 0]+ (022) [ 1 8 1) I ) (3.4)

where we use the notation .
(15) = (kikj) = (k7| k)

[i 3] = [k kj] = (kF| k7) (3.5)
(i5)=2k: - kj = (i5)[5i]

Using Fierz-type identities [8] and antisymmetry of the spinor product, our expression becomes

3 (98) (2220}l ) [a.21] — 3 Kllamn]) + (o1 &) 1 K] (a23) g 2a] + (23 #) [ ] g ) la 1)

1

=2k (= (qk) (g k) (P2 p1) [P2 1] + (1 k) [P1 k] (g p2) (g 2] + (P31 k) [p2 K] (g.1) [ 1))

(3.6)
But (pq)[pg] = —2p - g, so this is simply

Pr-kg -patp-gk-
-n-p2+t 7k B ep M - (3.7

where the reference momentum g plays the role of the usual light-cone parameter n.

For our purposes, we must consider not only null vectors k and p;, but also off-shell quantities.
But every off-shell vector we encounter can be written as a sum of some of the external momenta,
which are null vectors. Since any amplitude, as well as eqn. (3.2) is linear in the likes of p; and
P12, the extension to off-shell quantities is straightforward for them. Although the expression is also
linear in k, each of the pola.rizé.tion vectors is not, so we must extend our definition of the spinor

product to non-null vectors.



To do this, pick a standard basis for the momenta in the problem (e.g. eliminating the last
momentum vector using momentum conservation), and express k as a sum of null vectors, k = 3", g;.
Each unit-helicity spinor of momentum & then carries an additional index ¢, that is, we turn it into
a vector of unit-helicity spinors. By convention, bra vectors will carry an upper index, and ket
vectors a lower index. When we multiply two polarization vectors (or for that matter any pair of
spinor bra- and ket- vectors), we must also contract this additional index. The properties of spinor
product generalize in a straightforward way; for example, it is still antisymmetric in the interchange
of the two arguments, but because (k k) is a matrix rather than a scalar, antisymmetry does not
force it to vanish. With these definitions, summing over the helicities (+) produces the light-cone
transverse projection operator for off-shell momenta as well.

In computing the partial amplitudes, we encounter this new vector index in both the numerator
and denominator of expressions. In the numerator, we simply sum over it. In the denominator,
we may observe that as we always multiply a positive-helicity polarization vector by a negative-
helicity one carrying the same momentum, we will always end up with a conventional Lorenté inner
product. So in the denominator of the polarization vectors, we may treat the spinor products for
off-shell momenta simply as the square-root of the Lorentz product, ignoring the additional phase
information present in the spinor products.

Thus for ¢ = 0 we define
(gk), = {(9"’)’ if k=0
* V2 -k, ifk?#0

_ k], if k3=0
o= {4 TR

(3.8)

which leads to the off-shell definitions for the polarization vectors

el (k;q) = _______.@:/li Z;‘ L’;‘-)

_(‘l+|7nik-"+-)

V2[gk],

(3.9)
e (k;q) =

Several of the properties listed by Mangano et al. [2] for dot products of polarization vectors

survive,
g- B (kq)=0

e®) (k1;q) - e (kziq) =0 (3.10)
e (ks k3) - e(F)(ks;q) =0
where the superscript ~ indicates an off-shell momentum.
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In this framework, the recurrence relation eqn. (2.9) for gluon amplitudes becomes

Anp (k1,0'1§ 'kmﬂ'n;kn+1,3n+1) =

Z Sl 1 S Z Ai(kl’al;.”’ki-l’a'._l;_Kl,i—]_,a',)
- H

N~ o~

U-v”v—("'l )

%(Kl,i—b —0z) Ki,nr —0y; kn+la'n+1)
An—i+2(ki7 Oi3-43 kﬂ? On, _Ki,ru ay)

n-—1n—i+l
1 — —

Z Z Sl,i—l S,',H,J-_z Si“']’-l,n 4( 2] v z n+1)

i=2 j=2
Z A(kl,als kt—lro't—lr Kl,t laa'z)
7- I;' l;l"(+l )

(3.11)

Aj(kiyois.. s kivia, 00425 —Ki iy j—2,5y)

An—i-j+3(kiti-1,Tigi=15 i kny On; —Kitj_1,n,0:)

where the o; = (+, —) are the helicities of the gluons, and where we have suppressed the additional
index carried by the off-shell legs. (The minus sign in front of the four-gluon vertex terms is due
to the minus sign in equation (3.1).)

The four-point coupling in this scheme is not gauge-independent; the correct form for light-cone

gauge may be extracted from the four- and five-point functions,

. ) g - (ks — k1) g+ (ks — k)
1€y + €363 * £4 T 161 - €363 - &4 ——(k1+k3)+wl €4 €2 €3q (ks T F3) (3.12)

4. Applications

Using the the properties of products of polarization vectors we can use the light-cone recursion
relations to compute various helicity amplitudes. We start by computing the three- and four-point

vertices for various helicity configurations. Using eqn. (3.10b), we see immediately that

Va(++F)=0
Vi(FFFF) =0 (4.1)
Vi(FFF2) =Va(CFFD) = u(F=FF) = Vu(FF=FH) =0



We can also evaluate the other cases explicitly,

I’.‘!(Eh :;EZ’ ‘T';’I‘;Sr 1) =

it gy, (o127 00+ @1 317) a2)
I/4(7;17 :;EZa :;ESs ‘T‘a”zh ‘T‘) =
i(1°g) (27 q) [a3k][g4i] g - (ka + F2) (4.2)

lq1],[g2],(¢3).(a4), g - (ka+ks)
V4(£1; :;Eh ?';T":h :azh :r') =
i(1iq) [925] (3% q) [ 4] (q < (k3 — k1) L4 (ks — kz))
lq1],(22),[g3],(g4), \q:(kr+ks) q-(ka+ks)

where g is the light-cone parameter, and where we have written out explicitly the additional indices
_carried by off-shell spinors. Also, A3(FF) = 0, while 45(F=) = —i.
We can now derive some of the Parke-Taylor equations [10]. For example, leaving the momen-

tum arguments implicit we have

n
—"'—"'—1 -~ —— r— g~ _
_Z I3 S Z Ai(+'-- +Uz)V3(—0'z-—G'y+) Aﬂ—i+2(+"' +Uy)
g = 1,!‘;—1 1','" —~ o~
= 7..0,=(+,_)
n-1n—-i+1 1

Y Al 4B B A + BT TS, T F)
;ll;'l;l=(+l—)
= 1 gy g~ -
== S5 (A.-(+ v+ HWa(==+)4n-ita(+--- + 1)
i=2 1,i—1 “i,n

+ Ai(+ - + F)WVa(CFF)An-ipa(+--- + =)

+A;(+ - 4+ S)WVa(F=F)Anipa(+-- + J?))

n—-1n—it+l

- 1 |
-t z E S1,i-1 Si,i+j-2 Sit+i-1,n

i=2 j=2 7

-~ o~~~

(A.'(+ v + F)A(F o P Ancicjpa(+ e + D)V(CEFF)
+ A+ + P A+ D) Anmimra(F o F FWVA(EFETF)

FAt e+ D) A (e T Aniogra(t oo+ ;m(;::;))
(4.3)

10



Every term on the right-hand side is proportional to A;{(+ -+ + F) for some j < n + 1, so we can

show by induction that

An(+--+F)=0 (4.4)

by showing the equation holds true for one given value of n, say n = 4. But this case is simple,
because Az(+ + F) and A3(F¥) both vanish trivially. This equation, evaluated on-shell for the
last leg, gives us the first Parke-Taylor equation.

Using this equa;tion, we also find

A (—+ ---+¢-)—

‘Z; Sl,t—-l Sin et +)V3(—++)An—s+z(+ A)

(4.5)

Once again, each term on the right-hand side is proportional to a similar amplitude for smaller n,

and for n = 4,
a4 ~a ~ i, e -
A(—+ +4) = 'EV:;(—++)A3(+ + =)+ '5-1—2'-43(— + +WVa(=++). (4.6)

Now, we still have the freedorﬁ to choose the light-cone parameter g to be any null vector, in
particular the momentum of the first gluon. In that case, we must choose a different reference
momentum for the first leg, but that does not change the form of equations (4.5) and (4.6). With
this choice, the right-hand side of equation (4.6) vanishes identically, and so again by induction,

An(=+ -+ +F)g=1 =0 (4.7)

which on-shell becomes the second Parke-Taylor equation.

The V, terms drop out of the recurrence relation for A,(+ + --- 4+ =) as well, and we are left

with

- i ~ - -
Ania($oor + =) = 5=Va(+Fo=)An(+ o + (=)

K.Y

ki 1 - - - - -_~~
- Z s A TV RS A (o 4 )
(4.8)

where we have indicated the internal momenta by subscripts z, y, and z.
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For A; and A4, we find
i(3'q)(g3),k}
(12)(q1)(q2)

i(4’q)
(12)(23)(q1)(q3) [q4]
[E;:g (4 —’K23|1 g7 | Kaalg™) + (a7 | BaKaa|a™) [a1]) (4.9)

223 ((a3) (g™ K1a[37) la3] + (a7 | B4 [37) (a7 | Ko |q->)]
__i({4q)(q4).K
(12)(23)(q1)(q3)
where the off-shell index carried by the last leg is labelled by {. This leads to the ansatz
i(n'q) (gn). k3
(12)(23)---((n—2)(n-1)) (g1} (g (n-1))

As(+1+2=3) = -

A(+1+1+3=e) = -

Ap(+--+ )=~ (4.10)

which we prove by induction:
Appr(+-- + :) =

i ~ -~ - i - - -
+—Va(+F+a=n+1)4n(+ - + =(ca)) + g—An(+ - + (- )Va(Fy + =nt1)
s’l"’ Sl,n-l

n—1
1 - - - - .
=2 st TV F e Fun T a4 =)

__ i{(n+1)q)
[q(n +1)],(12)(23)---((n—1) n)(q1) (gn)

‘%‘z';'(q—lﬁnﬂ 17) q - knya + (((’z 1)17)1)) (0| Bnt1|n7) (1)q * kg

2 (g (4 ((J —1;; .8]) (q_| Ens1Kin Iq"’) (-1)q - knpa

_ i+ g)(a(n+ 1)), 1))
T {323 (=D m D) <qn>z<q(:—1» (g7 (9 [FreiFinla®)

_ i{(n+1)q)(a(n+ 1)), - ~ (=135 , _ _

= W2y oD m @b @m 1@+ D L GGy gy (4 Kim (4 D)

(4.11)
Using the identity
(G —1)4) (G-2)G-1)  _  ((G-2)3)
@G-\ @7) T @G -2 @G -1 @G -2) a7 (412)
which follows from a Fierz identity, we have
" ((-1F)  _ ((m-1)n)

2 QG- ah = @m-1) @ (4:13)

j=m
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and

—-1)7) _
Z(q(a 0y (a7 7 | Kim[P7)

_{G-1)5)

=2 Z (e(5 - 1)) (g 4) (ar)lre]

j=mr=j

-3 X aisnamants (410

& (m-1)7)

=2 Gim=)(n @b

- ((m— 1)—| Km.n [P—)
{@(m 1))

The expression for An+1 then becomes

i((n+1)'q)(g(n+1)),
(12)(23)---((n—1)n)(q1) (gn) (g(n+1)m)
i((n+1)'q)(g(n+1)), 1
{(12)(23)- - ((n—1)n) (g1) {gm) (q1)
_i{(n+1)'q) (g(n + 1)), kE1s
(12)(23)---(q1)(gn)

(17| Kan|(n+ 1)m™)
(q1)

(a7 | Bns1Bnsr 1) (4.15)

Similarly, for A,(— + --- + ¥), where the light-cone parameter is not the momentum of the
first gluon, we find

i (17| Bn|m™) (g1)°

(12)(23) -+ {(n—2) (n—1)) (g (n—1)) (gn), (4.16)
To derive the final Parke-Taylor equation, we will also need
Va(—1Z2F3)g=1 = i(291) (17| fa [r~) [134] (4.17)

[1r][12],(13),

where the subscript ¢ = 1 indicates that the light-cone parameter is the momentum of the first

external gluon, and where r is the reference momentum for that gluon.

Choosing the second external gluon to be the reference momentum for the first external gluon
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gives

AS(" - 'T‘)q:l,r=2 =0

A4(__ - + 'T‘)q:l,r:Z - 2(1 2)3 . ((1 3) [3 4’3] + (1—| ﬁ! |4k_) + (1_| p; '4k—>)

(23)(13)(14), S3,4 (14) 53,4
- i(12)°
As(= =+ ¥ Hhemir= = G GEa A (15,
(g (olplo) | i) ol
i(12)°

As(= = + + + Fe=tr=1 = I 45y (18] (16,

(15)[56x] , (17| Rel6x™) (17| Fsl6a")
x( Sse =+ (1s)k + s:,s :

(17| Bapake 6x~) + (17| Ka,3Babe |667)
51,2513 51,3514

+

(4.18)
This leads to the ansatz
An('— - + "; +:|:)q_l. r=2 =
i(12)°

(23)(34)---{(n—2) (n—1)) (1 (n—1)) {Ln),
(Ln-1)[(n=D)ma] | (1 Ealm") | (7| Rnlman) K2 (17| KnaoaBuba ")
X ( S T T Sen T S
: (4.19)

=3

which we prove by calculating An41:

A"+1(— -4 -+ ;)q=1,r=2 =
S;'V‘!(—:zq:n+1)An(“ + -+ ’T‘—z)
in
n-1 1

- Z ———A4i(— — + -+ Ty ) )WVa(Cui) T ey Frrr ) Anjea(+ -+ + S(_aiip))
Sl oJ IS] n

n.(_ - + + :r'—y(n) )V:.!(:y(ﬂ)+n'T'ﬂ+l)

ot Sl n—1
~ i(12)° (17[Ent1|(n+1)a")  (12)[2(n+ 1)]
~(23)+((n=1)n) (1n) (1 (n + 1)), (1n+1) 51

((G—1)3) (17| Kaj-2 [( = 1)) (17| Kjin|(n + 1)&7)
Z (17) 81,j-281,51

j=4
(G =13 ([ Kim|(n+ 1)) 3 (17| Kaumabi|1¥)
+§=3 G- D) (L) 2 Sty )
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~ i(12)° ((rl o [(n+1)k7)  (12)(2(n + 1))
—(23)--((n—=1)n)(Ln)(1(n+ 1)), (In+1) 51,2

_ GO D) (17 Kaa 1) (7] Kisan [+ D7)

=y (L4 1)) Sy,-1514 (4-20)
22 (1| K1k 1) (G- (1| Kjn|(n+1)")
+§ S1,1-151, JZ:“ (1(F—-1))(1j)
_ i(12)° ((1-| Fara[(n+1)e7)  (12)[2(n+ 1))
~{23)--+{(n-1)n) 1n)(1(n +1)), (ln+1) S1,2

_ "z_:l (17| Kag—ib |1+ 1)) (17| Kigrn | (n + 1))
1=3 (L(1+1)) S14-151.

2 (1 Kb 1) (14 1) 7| Ksam [(n 4 1)a7)
3! T+ SpiBrs

=3

_ i(12)° ((rl Fti|(n+1)6")  (12)[2(n +1)4]
= 23 (- ) (In)(L(n + 1)), (Tn+1) S

_ "z-:l (17| Kb [0+ 1)7) (17| Kigan [( 4+ 1)87)
= (L(1+1)) S10-151

"1 (1| Koo B 1) (U 1) Kipa [(n + 1)47)
+z e (1(1+41)) 51,1-‘15:x k

=3

We can combine corresponding terms in the two sums using a Fierz identity to obtain

i(12) ((rl Fai|(n 4 10e7)  (12)[2(n + 1)]
(23)---{(n—1)m) (1n)(1(n + 1)), (In+1) S1

_ "Z_:l (17| Kag-1EiKis1n | (n + 1)”->)

= S10-151,
~ i(12)° (17| Far [(n +1)%7)  (12)[2(n+ 1)i] 91
= 29 ((n=Dmy (In) (L (n + D)), n+1) 512 (4.21)

i "il (17| Kag-1 K |(n+ 1))

~ S1,-151,1
+"2_:1 “| Kz g-1Bifag (R4 1))
= S1,1-151,1
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Rearranging fs gives

i(12)°
(23)---((n—-1)n}(1n)(1(n+1)),

(17| Ear [(m+ 1)) (12)[2(n+1)] | = (17| B](n+1)7)
( (1n+1) S1,3 + Z S1.

=3

_ E (17| Kz |[(n+ 1)) (S1,0 — S1,0-1) + 'il (17| KaurBibnsa [(n + 1))

S1,1-1514 S1,1-151,1

=3 =3
_ i(12)®

~(23)--+((n-1)n) (1n)(1(n + 1)),

((l'l Frtil(n+1)e”) (17| Fan-a|(n+1)e) N 'il (17| Kap-1Fifnir |(r+ 1)x") )

(].ﬂ. + 1) Sl,n-—l
i(12)°
(23)--+((n—1)n)(1n)(1(n +1)),
((l‘l Fat1|(n+ 1)) + (Lmn(n+1)] (17| Fnr [(R + 1)87)

1=3

(1n+1) Snn+1 Snn+1
+ 'il (17| Kza-1Ftbngr [(R+ 1))
= S1,1-1514

which is the desired result.

If we take the last leg on-shell, we obtain the third Parke-Taylor equation,

i(12)°
(23)(34)---((n—1)n)(n1) "

An(—— + ---4) =

5. New Results

S11-151,

(4.22)

(4.23)

The recursion relations can be used to derive compact expressions for other helicity amplitudes

as well; off-shell expressions, such as those presented in the previous section, and those we shall

present below, can be used to speed up the numerical evaluation of helicity amplitudes for which

compact analytic expressions are not available, while on-shell expressions can be used directly.

After an appropriate amount of algebra, one finds and proves the correctness of ansitze for
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Aa(+- +=m+ -+ F) An(—+ -+ ), and Ap(+--- + = 5) (2 4):

i{gm)*
(12)(23)---((n—2)(n—1)}(q1)(g(n - 1)) (gn),
gty _ (8 En |mi ) (m”| Eum |a7) o = el (| Kula)
X (( |Fn |nJ ) (@ Kmn1) (q I#ﬂl 3 [qm] Z (¢ K, n-1) (¢ K141 n—l))
i
(12)(23)---((n—2)(n-1))(g(n—1)) [gn],
« (_("j 1) (17| Ralg ) (gn—1) (17| Fu|n~17) (a9 1) K2 (1| Falg") (q1)

Sn—l K Sn—l,n

An(+ +—m+ - +F)=

An("‘+ ...+:)=

(37| Bnfaoa |17) (17| Bn la™) (g1) 4 (n? q) (gn) ¥ (q1) (17| K1ale™) (17| Kiala7)

Sn-1,n (21) (g K1,3) Si,2

) = KaaleY (| Ky +
—(niq)(gn) k3> ¢ IK&I;(L),; ;lllfsl“ Al
n—1 1 I Kl,l Iq—) (l_l Kl,l—l |q—>>

+(n’q) (gn) k3 ‘11)'_23 (g K1,1-1) (g K1,1) S1,t-1

1=3

An(+"' + ._:)=

i
(12)(23)--+((n—2)(n-1)) (g 1) [gn].

(W(n-1)){(n=1)"|Enla") (g1){(n—1)"| En|17)
X S!,n—l
(nd(n—1)) K ((n—1)"|Kan-1]97) (g(n - 1))
+ S2,n—l
(097 B [(n= 1)) (@) {(=1)"| Kaimes Ja7) (2 (n=1))
Sin-1(9Kan-1)

{79 B @) (@ (n=1)) ((2=1)" | Bns [a)”

Sn—2,n-1 (¢ Kn-2,n-1) (g bn-1)

R {(n=1)" [ Kicin1 |97) ((n=1)7| Kin-1Bis |(n—~1)*)

—(n’q) k7 (gn) g St;n-151-1,n-1 (¢ K1-1,n-1)
i = ((n1)" o ™) ()" Fas )
("’ ) kx (gn) (q (n—1)) Z St;n-1 (¢ Ki1-1,n-1) (g Kin-1)

— (| kn|g7) (an) (g (n-1))’ z(qf(g 113—1|)ﬁ(lqlKl‘q"‘)l))

(5.1)
With these off-shell amplitudes, we can solve for one partial amplitude with three opposite-
helicity gluons, A,(—+ - - - + ——), without having to guess an ansatz. It is convenient to choose the

light-cone parameter to be the momentum of the last gluon, and the latter’s reference momentum to
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be the momentum of the first gluon; then, V(+3=) = 0, and the recursion relation (3.11) becomes

An(_+ cer 4 _._.)=

n-1

1 ~——

- Z E—S-—Az(— i +)q=nV(——‘)q—n r,.=1An—l+l(+ + - 'T')q=ﬂ
=3 1,l-19,n-1

n-1

1 _~ o~ o~

- Z S._TS.'—AI(_ + -4+ )q—n V(+_—)q=n ra=1 An—-l+1(+ 4 - ‘T‘)q:n
=2 1,l-19],n-1

n-—1

o~~~

1 -
-_— Z —-—T—Al(— + - + +)q—n V("+ )q_n ra=1 Aﬂ—l+1(+ S _)q=n
= S14-15Ln-1

n—2 n—i

- E Z Al(— )q-n m(+ )q=n (:A::)q—n rn=1An—l—m+3(+ o "T‘)q:n

=2 m=1

= (12)(23) - ((n—2) (n—-1)) [(n—2) (n—1)][(n—1) m] [n 1] [1 2]

((ﬂ-lﬂ)(IZ)[(n 1) (n-2)}{(n—1)"| K- |27)* L @n){(n=1)(r-2)) 12] (17| K_ |(n—2) )’

53 n—1 Sl n-3

4 (-1 A (r-1)) {1 (r=2)) [1n][12][(n—1) (n— ~2)| (17| K |(n-2)")

S1,n-3

+ (=) 1){(r=1)2) [(n—1) n][1 2] ((n—1) (n - 2)){(n—1)"| K_|27)

S3,n-1
(L(n=1)) Sz [12)[(n—1) (n—2)] - B 1n)(1n)(1 (n—1)) (17| K- |(n~2)") (12]

Sl,n—3
~ [n1}[n(n-1)}[12]{(n—1) (n-2)]

22 n(n-1)) (n-1)1) (17| Kru-1fu |1
x 3 (n(n—1))"(( Sllléll' 10-1F1 1)

("1) (1(n-1)) {(n—=1)"| Kis1,n-181](n-1)*)

Si+1,n-151n-1

_{n1)(n(n-1)){(n—=1)1) ((n~1)"| Krs1.nFe |1*)
51,4511

_(n1)(r(n-1))" ((n=1)"| Kir1nkr [1*) (17| Kin |n")
51,1-151,151,n-1

(01 (a (= 1)) (=) Kisimne1bo 1) (0 =1)| Kisr,n |n~)]

Sl,lSl+1,n—1 Sl,n—l

=3

(5.2)
where K_ = ky + kn-1 + kn. While this form is not quite manifestly symmetric (for even n)

or antisymmetric (for odd n), as required by equation (1.2), it in fact does possess the required
symmetry. This expression is more complicated than the Parke-Taylor equation for amplitudes with

two opposite helicities, but one may observe two features: (a) the number of terms increases only
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linearly with n, rather than factorially as might be feared from the Feynman diagram expansion,
and (b) most of the two-particle singularities are concentrated in the common denominator outside

the parentheses.
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Fig. 1. Basic vertices for zero-mode diagrams.



